QUASARS IN CRISIS EDINBURGH, 2019 AUGUST 6

Changing-state quasars in CRTS (and beyond)

Matthew J. Graham Center for Data-Driven Discovery/ZTF, Caltech mjg@caltech.edu

Collaborators

- Andrew Drake (Caltech)
- S. George Djorgovski (Caltech)
- Ashish Mahabal (Caltech)
- Daniel Stern (Caltech/JPL)
- Barry McKernan (AMNH/CUNY)
- Saavik Ford (AMNH/CUNY)
- Nic Ross (ROE)
- Yutaro Tachibana (Tokyo Tech)
- Suvi Gezari and the ZTF BH/TDE Working Group

Looking for more...

The Catalina Real-time Transient Survey (CRTS)

- Collaborative survey with Catalina Sky Survey (LPL, UA)
- Unfiltered observations 21 nights/lunation covering up to 2000 deg²/night
- Covers 33000 sq. deg. (0 < RA < 360, -75 < Dec < 70).
- Calibrated photometry for 500 million objects (> 100 billion data points)
- Depth V = 19 to 21.5
- 100 600 observations in most regions (median ~ 320)
- Temporal baselines of 10 min to ~12 years
- Basis for quasar variability studies: characteristic timescales (Graham et al. 2014); close binaries (Graham et al. 2015a,b); major flaring (Graham et al. 2017)

6 August 2019

What does a CLQ look like?

Can we be more systematic?

Selection	Total $\#$
Number of MQ sources with CRTS light curve	1,411,364
with more than 10 observations	$1,\!143,\!162$
and not a known blazar	$1,\!139,\!438$
and outside 95% contour in BB/SWV ₁ space	$65,\!816$
and $\Delta W1 $ or $\Delta W2 > 0.2$	$47,\!451$
and $z < 0.95$	14,412
and has SDSS spectrum	7,576
and has second epoch spectrum after $\geq 500~{\rm days}$	617
and H β / [O III] ratio changes by $>$ 30%	94

(Graham et al. 2019)

CSQs getting brighter...

... and dimmer

7

Comparing samples

CSQs (74)

MacLeod et al. (2019) (16)

8

6

f_{HB hiah}/f_{HB low}

10

CSQs (this paper)

2

0:0

0.4

0.2

0:0

0.4

0.2

0.0

0

The demographics of CQs

Matthew J. Graham

shorter

 $_{\nu} = 1 \text{yr}, 150 \text{r}_{g}$

The Zwicky Transient Facility (ZTF)

- 47 deg² field of view camera on Palomar Oschin 48"
- 3750 deg² / hr to 20.5-21 mag (1.4 TB / night)
- Full northern sky every three nights in g and r
- Galactic Plane every night in g and r
- NEW: TESS Sector every night in g and r (July 18, 2019)
- Over 3 years: 3 PB, 750 billion detections, ~1000 detections / source
- First megaevent survey: 10⁶ alerts per night (~50M public since June 2018)

	TF	LSS57
No. of sources	1 billion	37 billion
No. of detections	1 trillion	37 trillion
Annual visits per source	1000 (2+1 filters)	100 (6 filters)
No. of pixels	600 million (1320 cm ² CCDs)	3.2 billion (3200 cm ² CCDs)
Field of view	47 deg ²	9 deg ²
Hourly survey rate	3750 deg ²	1000 deg ²
Nightly alert rate	1 million	10 million
Nightly data rate	1.4 TB	15 TB

Slow to detect as transient phenomena

Deep modelling of time series

- Consider: $(y_0, \Delta t_0) \oplus (\Delta t_0) \rightarrow y_1$
- Consider: $(y_0, \Delta t_1, \dot{y}_0, \ddot{y}_0) \rightarrow y_1$

• 12,000 quasars with $\Delta t = 500$ days

QSOs with RNNs

Matthew J. Graham

F

Deep time series features

(Tachibana et al. 2019)

Physical correlations

Evidence for asymmetry

- Magnitude of asymmetry decreases as luminosity or black hole mass increases
- Consistent with self-organized disk instability model

Summary

- Systematic searches for photometrically/spectroscopically variable quasars are now producing statistical samples
- Evidence in favor of heating/cooling fronts propagating through the disk to explain changing look/state quasars
- The search is on for:
 - higher redshift equivalents
 - multiwavelength equivalents
 - Different AGN types
- What is the trigger? Same mechanism in all?
- Can we detect these early with nightly monitoring?
- Deep learning is a viable descriptor of quasar variability
 - Latent features correlate with physical parameters
 - The arrow of time is detectable
- Forecasting seems tractable